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Oscillatory clusters in a model of the photosensitive Belousov-Zhabotinsky reaction system
with global feedback

Lingfa Yang, Milos Dolnik,* Anatol M. Zhabotinsky, and Irving R. Epstein
Department of Chemistry and Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9

~Received 22 May 2000!

Oscillatory cluster patterns are studied numerically in a reaction-diffusion model of the photosensitive
Belousov-Zhabotinsky reaction supplemented with a global negative feedback. In one- and two-dimensional
systems, families of cluster patterns arise for intermediate values of the feedback strength. These patterns
consist of spatial domains of phase-shifted oscillations. The phase of the oscillations is nearly constant for all
points within a domain. Two-phase clusters display antiphase oscillations; three-phase clusters contain three
sets of domains with a phase shift equal to one-third of the period of the local oscillation. Border~nodal! lines
between domains for two-phase clusters become stationary after a transient period, while borders drift in the
case of three-phase clusters. We study the evolving border movement of the clusters, which, in most cases,
leads tophase balance, i.e., equal areas of the different phase domains.Border curlingof three-phase clusters
results in formation of spiral clusters—a combination of a fast oscillating cluster with a slow spiraling move-
ment of the domain border. At higher feedback coefficient, irregular cluster patterns arise, consisting of
domains that change their shape and position in an irregular manner. Localized irregular and regular clusters
arise for parameters close to the boundary between the oscillatory region and the reduced steady state region
of the phase space.

PACS number~s!: 47.54.1r, 82.20.Mj, 82.40.Bj
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I. INTRODUCTION

The Belousov-Zhabotinsky~BZ! reaction has been widel
used as a prototype system for the study of chemical os
lations and pattern formation for over 30 years. The
reaction-diffusion system has been utilized primarily to u
derstand the dynamics of patterns consisting of trave
waves, including target patterns and spiral waves@1–3#. The
nontraveling types of patterns found in other chemical os
lating systems have not been observed in the autonom
homogeneous BZ reaction. Examples of nontraveling p
terns include Turing structures and standing oscillatory p
terns: waves and clusters. Clusters consist of sets of dom
in which nearly all of the elements in a domain oscillate w
the same amplitude and phase@4–8#. They resemble standin
waves, but possess no intrinsic wavelength.

The requirements for obtaining Turing structures do
favor the BZ system, owing to an unsuitable ratio of diff
sion coefficients for the autocatalytic and inhibitory speci
Standing oscillatory patterns do not naturally arise in the
reaction. Until recently, standing waves and clusters h
been observed only in heterogeneous systems, e.g., d
electrochemical dissolution of nickel@9#, oxidation of CO on
a Pt catalyst@10#, hydrogen oxidation on a nickel ring@11#,
and methylamine oxidation on Rh@12#. Global feedback in-
teractions play important roles during these heterogene
processes, and they are responsible for the occurrenc
standing patterns. In contrast, homogeneous reactions, u
they are specifically designed, do not possess these g
interactions and therefore they do not commonly disp
standing patterns. Nevertheless, studies with a simple m
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of an autonomous homogeneous chemical reaction dem
strate that standing waves may arise in homogeneous
tems via the short-wave instability@13–15#.

The photosensitive Ru(bpy)3-catalyzed BZ reaction pro
vides an effective way to control oscillations by light illum
nation. Standing waves in the photosensitive BZ system w
first reported in a nonautonomous system with external p
odic forcing @16#. Recently, experimental observation of
family of oscillatory clusters has been reported in the B
reaction-diffusion system with photochemical global fee
back ~GF! @17#. The experiment described in Ref.@17# em-
ploys the transmission of analyzing light through the wo
ing area of a gel layer to measure the average concentra
of Ru(bpy)3

31 . This quantity is used to determine the inte
sity of the actinic light, which creates a photochemical glob
feedback control.

Here, we study an autonomous model of the photose
tive Ru(bpy)3-catalyzed BZ reaction with a global feedbac
which corresponds to the experiment described in Ref.@17#.
In our study we assume a proportional dependence betw
the actinic light intensity and the difference between the
erage concentration of Ru(bpy)3

31 and a target concentra
tion. We call this proportionality constant the feedback co
ficient, and we study pattern formation as a function of t
parameter. Our simulations in one- and two-dimensional s
tems exhibit a plethora of patterns, including two-phase a
three-phase clusters and other, more complex clusters.

II. MODEL AND METHOD OF SIMULATION

We study pattern formation in a quantitative model of t
BZ reaction with a realistic global feedback coupling. In t
photosensitive Ru(bpy)3-catalyzed BZ reaction, illumination
results in production of Br2 ions via reduction of bromoma
lonic acid by the excited Ru(bpy)3

21 ion @18#. The model,
6414 ©2000 The American Physical Society
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based on a simplified, two-variable version of the BZ reaction model@19,20#, is
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Here X5@HBrO2#, Z5@Ru(bpy)3
31#, U5@HBrO2

1#, A
5@HBrO3#5h0A0 /(h010.2), A05@NaBrO3#, B is the con-
centration of malonic acid,C is the total concentration o
catalyst@Ru(bpy)3

31#1@Ru(bpy)3
21#, h0 is the Hammett

acidity function, andDx ,Dz are the diffusion coefficients
Zav is the instantaneous spatial average ofZ and Zt is the
target value of the oxidized form of the catalyst, which is
to correspond toZss, the unstable steady state concentrati
The parameterg is the feedback coefficient, which depen
on the maximum actinic light intensity and on the quantu
yield of the photochemical reaction@17#.

The GF in Eq.~1! represents an indirect~off-diagonal!
feedback, rather than the more commonly encountered d
~diagonal! feedback@11#. This choice corresponds to the re
experimental situation, where one observes the change
the concentration of the oxidized and reduced forms of
Ru(bpy)3 complex and thus measures theZ variable, while
the actinic light directly influences@HBrO2#, theX variable.
The parameters and constants used in our simulations
shown in Table I; the feedback coefficientg is the variable
parameter. Simulations of the one- and two-dimensio
reaction-diffusion system are performed using a fini
difference approximation to Eq.~1!. The corresponding sys
tem of ordinary integro-differential equations is solved us
the Euler method with adjustable time step. The maxim
step used in the simulations is 231022 s. The number of
grid points varies with the length of the system. Unless sta
otherwise, the size of the one-dimensional system is 10
and we use 30 grid points per millimeter; the size of t
two-dimensional system is 10310 mm2 with a resolution of
20 grid points per millimeter. Neumann~zero-flux! boundary

TABLE I. Rate constants and parameters of Eq.~1!.

k2 (M 22 s21) 2.03106 A0(M ) 0.5
k3 (M 22 s21) 2.0 B(M ) 0.27
k4 (M 21 s21) 3.03103 C(M ) 2.031023

k5 (M 22 s21) 3.3310 h0(M ) 0.55
k25 (M 21 s21) 4.23106 q 0.7
k6 (M 21 s21) 4.03106 Dx(cm2 s21) 1.531025

k26 (M 21 s21) 3.03102 Dz(cm2 s21) 2.031026

k7 (M 21 s21) 9.231021

k8 /k27 2.531024

k9 (s21) 3.031026
t
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conditions are employed in most of the simulations. We u
spatially uniform and random initial conditions, stationa
patterns from previous runs, and some specially desig
initial conditions.

III. RESULTS

A. Local dynamics

We first analyze the dynamics of model~1! without dif-
fusion terms, which corresponds to a well-mixed syste
Figure 1 shows a bifurcation diagram in theB-h0 parametric
space for the feedback-free system (g50). Hopf bifurcation
lines separate the region of sustained oscillations from
gions of reduced and oxidized steady states. In the follow
simulations we choose parametersB50.27M and h0
50.55M from the oscillatory region~point P in Fig. 1!. The
oscillatory behavior at this point is displayed in Fig. 2~a!,
and the effect of the feedback is shown in Fig. 2~b!. The
amplitude and frequency of oscillation remain almost u
changed for 0,g,0.8 s21, but at larger values of the feed
back coefficient the limit cycle is strongly affected. The am
plitude and period of oscillations decrease as the feedb
coefficient is increased. If the target valueZt is set to the
steady state valueZss, the feedback does not affect the st
bility of the steady state.

FIG. 1. Bifurcation diagram of the well-stirred ruthenium
catalyzed BZ reaction without feedback. The Hopf bifurcation lin
divide the parametric planeB-h0 into domains of sustained oscilla
tion, steady state with high concentration of Ru(bpy)3

21 ~reduced
SS!, and steady state with high concentration of Ru(bpy)3

31 ~oxi-
dized SS!. Unless otherwise stated, simulations are performed w
parameters corresponding to pointP. Other parameters used i
simulations are shown in Table I.
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B. Bulk oscillations and traveling waves
at weak global feedback

We study pattern formation in one- and two-dimensio
extended systems. Figure 3 displays a diagram of the b
types of pattern observed: bulk oscillations~BO’s! and trav-
eling waves~TW’s! without feedback or at weak feedbac
two-phase~C2! and three-phase~C3! clusters at intermediate
intensity of GF, and irregular clusters~IC’s! at relatively
high levels of feedback. Eventually, IC’s are suppressed
very high feedback coefficient and small-amplitude bulk
cillations ~SBO’s! emerge.

A simulation starting from a traveling wave pattern in
one-dimensional~1D! system evolves to a uniform, period
cally oscillating pattern in a feedback-free system. In a
system some spiral waves are stable without feedback. B
BO’s and TW’s are stable when the feedback is weak. T
ranges ofg in which bulk oscillations and traveling wave
are stable overlap, which indicates that the pattern forma
is dependent on the initial conditions. Spatially uniform in
tial conditions always lead to BO’s wheng,0.8 s21. We
obtain spiral waves, target patterns, and alternating trave
waves in our 2D simulations forg,0.6 s21 from nonuni-
form initial conditions.

C. Oscillatory cluster patterns

1. Two-phase clusters

When the feedback coefficient exceeds 0.6 s21, in the
case of random or traveling wave initial conditions,
0.8 s21 in the case of spatially uniform initial conditions
two-phase clusters emerge. These clusters have fixed sp
domains and oscillate periodically in time; they resem
standing waves, but their spatial domains are determined
the initial conditions, and they possess no intrinsic wa

FIG. 2. Oscillations of@Ru(bpy)3
31# in the well-stirred system.

~a! Oscillations in system without feedback.~b! Effect of feedback
coefficient g on maximum and minimum concentrations
Ru(bpy)3

31 during oscillation.Zss is unstable steady state conce
tration of Ru(bpy)3

31 .

FIG. 3. Parametric diagram of 1D system with zero-flux boun
ary conditions. BO, bulk oscillations; SBO, small-amplitude B
TW, traveling waves; C2, two-phase clusters; C3, three-phase c
ters; IC, irregular clusters.
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length. Figure 4~a! shows an example of two-phase cluste
arising from a spiral wave. The rotational movement of t
spiral stops after increase of the feedback coefficient, w
the spiral shape is preserved. The clusters have two dis
phases half a period apart, which leads to antiphase peri
oscillation of domains with different phases@see Figs. 4~b!
and 4~c!#. Domains with different phases are separated
nodal lines, which, after a transient period, become stati
ary and do not change their position with time. The em
gence of stationary C2 clusters in this system usually p
ceeds via very long transients. The tiny changes in the no
lines hardly visible in Fig. 4~b! are indications of these long
lived transients.

When cluster patterns arise from random initial con
tions, they always contain in the early stages many sm
spots of different shapes with sharp corners and large cu
tures, as shown in Fig. 5~a!. In the later stages of the evolu
tion, the smallest spots disappear and the nodal lines s
rating domains become smoother due to a curvature ef
@Figs. 5~b! and 5~c!#. Figure 5~d! shows this coarsening pro
cess in a space-time plot. Although the oscillatory clus
patterns do not possess a characteristic wavelength, t
patterns require a minimum wavelength in order to be s
tionary. Therefore, to obtain stationary cluster patterns fr
random initial conditions, one needs to run the integrat
for a long time. As Fig. 5~d! indicates, the coarsening pro
cess takes close to a hundred periods of oscillation.

Another property of C2 clusters isphase balance, equality
of areas occupied by the two domain types. If the init
conditions do not satisfy this equal area property, then
nodal lines slowly drift during the transient period un
phase balance is attained. In a 1D system the lengths o
domains of the minority phase increase monotonically. F
ure 6 shows a 1D simulation with initial conditions such th

-

s-

FIG. 4. Two-phase cluster arising from spiral wave,g51 s21.
~a! Snapshot of a 2D pattern at time 400 s.~b! Spatiotemporal
behavior along a vertical line at midpoint of horizontal axis. Tim
shown corresponds to 260 s.~c! Local oscillations at pointsA ~dot-
ted line! and B ~dashed line! together with oscillations of averag
concentrationZav ~solid line!. Gray levels represent@Ru(bpy)3

31#,
with black corresponding to the maximum and white to minimu
concentration. Size of system is 10310 mm2.
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the ratio of lengths of the two phases isL1:L251:3. One
can see that after about 100 periods of oscillation the len
of the two domain types are almost equal. In 2D systems,
balance between domains is also reached, but the tran
processes are more complex because of the curvature e

2. Three-Phase Clusters

When the feedback coefficient exceedsg51.8 s21, the
C2’s become unstable and three-phase patterns arise.
phases of C3 clusters are shifted by one-third of the perio
the local oscillations (T). Figure 7 shows an example of a C
pattern obtained from random initial conditions. The d
mains of the three clusters with low, medium, and high le
els of @Ru(bpy)3

31# are displayed as white, gray, and blac
respectively. After one-third of the periodT, the white do-
mains become black, black domains become gray, and
turns to white. After a full period, the levels o
@Ru(bpy)3

31# repeat. Figure 7~d! shows the oscillatory be
havior of each phase together with the average concentra
Zav . The borders between adjacent domains contain cont
ous levels of Ru(bpy)3

31 . When a gray ~intermediate
@Ru(bpy)3

31#) domain is adjacent to a black~high
@Ru(bpy)3

31#) domain, the border also contains lo

FIG. 5. Two-phase cluster pattern obtained from random ini
conditions,g51 s21. Sequence of the oscillatory cluster patte
taken at~a! t5250 s ~b! t5750 s, and~c! t54300 s.~d! Pattern
evolution along the bottom left–top right diagonal. Size of syst
is 10310 mm2.

FIG. 6. Evolution of phase balance between domains of tw
phase standing cluster in 1D system with initial ratio of phase
main sizes 1:3;g51 s21. ~a! Spatiotemporal behavior.~b! Oscilla-
tions of average concentration of Ru(bpy)3

31. Length of system is
10 mm.
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@Ru(bpy)3
31#, which is displayed as white; one can alwa

see a narrow white line between gray and black domain
Figs. 7~a!, ~b!, and~c!. The time sequence shown in Fig. 7~d!
displays periodic oscillations at three points of space. Ho
ever, individual points undergo periodic oscillation for only
few periods. In a longer run the oscillations are not qu
periodic, because the borders of the phase domains m
but the oscillations of the average concentration
Ru(bpy)3

31 remain periodic. We always obtain C3’s whe
the feedback coefficient is 1.8,g,3.1 s21. Within this
range the C3’s do not overlap with any other pattern, i
their formation is independent of the initial conditions. C3
arise also for 0.65,g,1.8 s21, but in this case they are no
the only pattern found in the system~see Fig. 3!. We can
observe C3’s within this multistable range if we first create
C3 at a higher value ofg, where it is the only stable pattern
and then decrease the feedback coefficient. Wheng drops
below 0.65 s21, C3’s vanish and traveling waves emerge.
we start from a TW pattern and increase the feedback c
ficient beyond the TW stability, we usually obtain C2’s firs
only afterg.1.8 s21 do the C3’s arise. In Fig. 3 this behav
ior is shown as overlapping of the domains of C2’s with p
of the TW and part of the C3 domains.

(a) Border movement.As mentioned above, in the case
C2’s the borders between domains with different phases
come stationary after a transient period. We have not fo
stationary borders in the case of C3’s, even for very lo
runs. As the domains change phase~and thus the level of
@Ru(bpy)3

31#) with time, from white to black and then to
gray, the border gradually moves in one direction. To follo
border movement we take one snapshot per periodT and
compare borders in these consecutive snapshots. The bo
of C3’s always drift, following a simple rule: the borde
moves in the direction that leads to expansion of black
mains into white domains, white domains into gray, and g
domains into black. According to this rule, when the d
mains alternate regularly, their sizes remain almost
changed and only their positions change with time@Fig.
8~a!#. On the other hand, if a domain is surrounded entir
by domains of a single@Ru(bpy)3

31# level, then there will

l

-
-

FIG. 7. Three-phase clusters,g52.5 s21. Snapshots~a!, ~b!,
and~c! are taken at time intervals 11.88 s apart, which correspo
to one-third of local oscillation period.~d! Local oscillations at
points A, B, C of frame ~c! together with oscillations of averag
concentrationZav ~solid line!. Size of the system is 10310 mm2.
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be a size adjustment. Figure 8~b! shows a black domain sur
rounded by gray domains. The black domain gradua
shrinks in size and eventually disappears, as the gray dom
engulfs it.

In some cases, we observe another interesting beha
Figure 8~c! shows a collision between two white domain
which expand through a gray domain. At the point of co
sion, a small piece of a third~black! domain is created. This
new black domain area increases in size with time. The
lision thus allows the formation of a ‘‘missing’’ third domai
at the collision point.

(b) Border curling. Sometimes, three domains wit
phases shifted byT/3 meet at a singular point. Around th
point, the borders rotate periodically, creating a cluster sp
wave. This border curling occurs naturally when C3’s ar
from random initial conditions. One can observe several
eas with border curling in Fig. 7. To demonstrate the dyna
ics of border curling, we employ special initial condition
which lead to creation of C3’s with curling borders. Figure
displays such a pattern, which arose from the initial con
tions shown in Fig. 9~a!. The pattern displays three-pha
oscillations on the short time scale, while on the long tim
scale one can see the movement of domain borders, w

FIG. 8. Border drift and interactions of domains in three-pha
clusters. Enlargement of parts of pattern from Fig. 7; displayed a
is 1.3531.35 mm2. ~a! Drift of border domains, snapshots taken
time interval 2T apart, whereT is period of local oscillations.~b!
Annihilation of a domain—snapshots are taken at time intervalT
apart.~c! Fusion of two domains of one phase, originally separa
by a domain of second phase, results in creation of domain of t
phase—snapshots taken at time intervalsT apart.

FIG. 9. Three-phase spiral cluster.~a! Initial pattern of three
domains with phases shifted by one-third of local period. Poin
which three domains meet becomes tip of spiral during long-t
border curling movement.~b! Pattern at timet548T. ~c! Pattern at
time t5153T. g51 s21, local period of oscillationsT538.16 s,
size of system is 10310 mm2.
y
in

or.
,

l-

al
e
r-
-

i-

e
ch

form a three-armed spiral. If we take one snapshot per pe
and display the pattern as a sequence of these snapshot
see only a rotating three-armed spiral.

(c) Phase balance.We investigate the properties of C3
in both 1D and 2D systems. In a 2D system with eith
zero-flux or periodic boundary conditions, we find that t
sum of the areas belonging to each of three phases alw
converges to one-third of the total area. Once this phase
ance is reached, the oscillations ofZav become periodic with
a frequency three times higher than the frequency of the lo
concentration oscillations. This phenomenon is analogou
the phase balance of C2’s, where the frequency ofZav is
twice the frequency of the local oscillations. However, in 1
systems phase balance of C3’s is not always achieved.
development of phase balance in a 1D system requires p
odic boundary conditions, which allow rotational moveme
of the phase domain borders. After a transient period, wh
depends on the initial conditions, all borders move at
same constant speed, which indicates that phase balanc
been reached@see Figs. 10~a! and 10~b!#.

(d) Absence of phase balance.In a 1D system with zero-
flux boundaries, movement of domain borders is limite
which results in persistent unequal sizes of the phase
mains. The zero-flux boundary conditions do not allow ro
tional movement of the phase borders, and this prevents
system from reaching phase balance. Movement of the
main borders first leads to a decrease of the area occupie
some of the domains. The border movement eventu
stops, and, as Figs. 10~b! and 10~d! show, a stationary pat
tern is established with unequal areas occupied by dom
with different phases. This stable cluster pattern repres
an exception to a general rule that oscillatory patterns w
period larger than 2 are typically metastable rather th
stable@21,22#.

e
a

d
rd

t
e

FIG. 10. Three-phase clusters in 1D system.~a! Phase balance is
reached in system with periodic boundary conditions.~b! Absence
of phase balance in system with zero-flux boundary conditions.~c!,
~d! Oscillations of average@Ru(bpy)3

31# correspond to patterns
shown in~a! and ~b!, respectively. Length of system is 10 mm.g
51 s21.
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3. Irregular Clusters

At relatively largeg (.3.1 s21), another type of pattern
arises. In this case, local oscillations in domains of differ
phases are not periodic, even during a short period of ti
as in the case of C3’s, and we dub these patterns irreg
clusters. Figure 11 shows a pattern of IC’s. Any type
initial conditions results in a random distribution of blac
gray, and white domains, as shown in Fig. 11~a!, and an
absence of stationary node lines, shown in Fig. 11~b!. Figure
12 shows oscillations at one arbitrarily chosen point toget
with oscillations in the average concentrationZav . Figure 12
demonstrates that local oscillations of IC’s are aperiod
while the global oscillations are nearly periodic.

4. Localized clusters

The IC’s shown in Fig. 11 display irregular oscillations
every point of the system@see Fig. 11~b!#. When the system
is inside the oscillatory region, far from the Hopf bifurcatio
lines ~point P in Fig. 1!, this pattern gives way to small
amplitude bulk oscillations wheng.3.5 s21. When param-
etersB andh0 are close to the Hopf bifurcation line separa
ing the oscillatory region from the reduced steady st
region, we do not obtain C3’s, but instead patterns of loc
ized clusters~LC’s! arise. Figures 13~a! and 13~b! show lo-
calized irregular clusters. In this case IC’s occupy only a p

FIG. 11. Irregular cluster pattern in 2D system with zero-fl
boundary conditions.~a! Snapshot of pattern.~b! Corresponding
spatiotemporal behavior along horizontal line at midpoint of ve
cal axis. Time shown is 1290 s.g53.2 s21; size of system is 5
35 mm2.

FIG. 12. Local and global oscillations of irregular cluster patte
shown in Fig. 11.~a! Oscillations at a point and~b! corresponding
power spectrum.~c! Oscillations of average concentration
Ru(bpy)3

31 and ~d! corresponding power spectrum. Main peak
located at frequency 0.104 Hz.
t
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lar
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,

e
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rt

of the space, while in the remaining part small-amplitu
bulk oscillations occur. Wheng is increased further, the are
of SBO’s increases. Then, a pattern of localized C2 clus
emerges@Figs. 13~c,d!#, which displays regular periodic os
cillations in domains that occupy a small part of the spa
This pattern, which has stationary nodal lines, has been
scribed in Ref.@16#. Finally, wheng.3.5 s21, the system
displays uniform small-amplitude bulk oscillations.

When the parameters are close to the boundary with
oxidized steady state, we obtain only C2’s at intermedi
values of the feedback coefficient. Both weak and stro
feedback result in uniform oscillation, but with large an
small amplitude, respectively.

IV. DISCUSSION AND CONCLUSION

We have studied pattern formation in a realistic model
the photosensitive BZ reaction. A plethora of reactio
diffusion patterns arise when the feedback coefficient is v
ied. We focus here on cluster formation. At relatively lo
values of the feedback coefficient, two- and three-phase c
ters arise, each of which consists of uniform domains. Ins
the domains, oscillations are synchronous. The domains f
patterns which usually lack spatial periodicity, since glob
feedback does not produce a characteristic wavelength. D
ing the evolution of these patterns, global feedback plays
important role in establishing equality between the areas
cupied by domains of different phases. Border curling
three-phase clusters may lead to formation of sp
clusters—a fast oscillating cluster with a slow three-arm s
raling movement of the borders. At higher feedback coe
cient, irregular cluster patterns arise. Local oscillations
irregular clusters are aperiodic in time; however, oscillatio
of the average@Ru(bpy)3

31# remain periodic in this case
Localized clusters arise only for parameters near the H
line, and they display regular or irregular clusters, whi

-

FIG. 13. Irregular and regular localized clusters in vicinity
Hopf bifurcation~near reduced steady state!. ~a! Snapshot of local-
ized irregular cluster and~b! corresponding spatiotemporal patter
g50.5 s21. ~c! Snapshot of regular localized standing cluster a
~d! corresponding spatiotemporal pattern,g50.7 s21. Spatiotempo-
ral patterns are taken along horizontal line at midpoint of verti
axis. Time shown in~b! and ~d! is 1080 s. Parameters:h0

50.19 M, B50.27 M. Size of system is 10310 mm2.
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occupy only a part of the space, while the remaining p
displays small-amplitude bulk oscillations.

We are not aware of other work demonstrating thr
phase clusters as a result of global feedback coupling. M
over, the C3’s obtained in the BZ model with global fee
back are found in a relatively wide parameter region with
other overlapping pattern. This means that three-phase c
ters arise from any initial conditions. The existence of C
in the BZ reaction with global feedback has been confirm
experimentally in our laboratory@23#. Unlike standing
waves, clusters do not possess an intrinsic wavelength
thus they can maintain a pattern of initial conditions inde
nitely. This suggests the possibility of creating a system w
pattern memory. If one illuminates a layer of photosensit
ky

,

a-

n

ys

.

rt

-
e-
-
o
s-

s
d

nd
-
h
e

BZ reaction mixture through a mask imprinted with an ima
and then applies global feedback, the initial image can
maintained in the form of C2’s for some time. Such an e
periment may be thought of as an extension of the study
Kuhnertet al. @24#, in which the authors succeeded in tra
siently preserving photographic images in rutheniu
catalyzed BZ reaction mixtures.
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