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Oscillatory clusters in a model of the photosensitive Belousov-Zhabotinsky reaction system
with global feedback
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Oscillatory cluster patterns are studied numerically in a reaction-diffusion model of the photosensitive
Belousov-Zhabotinsky reaction supplemented with a global negative feedback. In one- and two-dimensional
systems, families of cluster patterns arise for intermediate values of the feedback strength. These patterns
consist of spatial domains of phase-shifted oscillations. The phase of the oscillations is nearly constant for all
points within a domain. Two-phase clusters display antiphase oscillations; three-phase clusters contain three
sets of domains with a phase shift equal to one-third of the period of the local oscillation. Baoded lines
between domains for two-phase clusters become stationary after a transient period, while borders drift in the
case of three-phase clusters. We study the evolving border movement of the clusters, which, in most cases,
leads tophase balance.e., equal areas of the different phase doma&wsder curlingof three-phase clusters
results in formation of spiral clusters—a combination of a fast oscillating cluster with a slow spiraling move-
ment of the domain border. At higher feedback coefficient, irregular cluster patterns arise, consisting of
domains that change their shape and position in an irregular manner. Localized irregular and regular clusters
arise for parameters close to the boundary between the oscillatory region and the reduced steady state region
of the phase space.

PACS numbes): 47.54:+r, 82.20.Mj, 82.40.Bj

[. INTRODUCTION of an autonomous homogeneous chemical reaction demon-
strate that standing waves may arise in homogeneous sys-
The Belousov-Zhabotinsk§BZ) reaction has been widely tems via the short-wave instabilift3—15.
used as a prototype system for the study of chemical oscil- The photosensitive Ru(bpycatalyzed BZ reaction pro-
lations and pattern formation for over 30 years. The Bzvides an effective way to control oscillations by light illumi-
reaction-diffusion system has been utilized primarily to un-nation. Standing waves in the photosensitive BZ system were
derstand the dynamics of patterns consisting of travelindirSt reported in a nonautonomous system with external peri-
waves, including target patterns and spiral wades3). The  odic forcing[16]. Recently, experimental observation of a
nontraveling types of patterns found in other chemical oscilfémily of oscillatory clusters has been reported in the BZ

lating systems have not been observed in the autonomoug‘e,aCtion'OIiﬁcUSion system_with photoghem?cal global feed-
homogeneous BZ reaction. Examples of nontraveling patpaCk(GF) [17]. The experiment described in R¢L7] em-

terns include Turing structures and standing oscillatory pat.ploys the transmission of analyzing light through the work_—
) . .ing area of a gel layer to measure the average concentration
terns: waves and clusters. Clusters consist of sets of domain

3+ i T, ; ; )
in which nearly all of the elements in a domain oscillate withO Ru(bpy);™ . This quantity is used to determine the inten

the same amplitude and phdde-8]. They resemble standing ?;chgat?lf 33::35 light, which creates a photochemical global

waves, but possess no intrinsic wavelength. Here, we study an autonomous model of the photosensi-
The requirements for obtaining Turing structures do NOtj e Ry(bpy),-catalyzed BZ reaction with a global feedback,
favor the BZ system, owing to an unsuitable ratio of diffu- \hich corresponds to the experiment described in Ré&f.
sion coefficients for the autocatalytic and inhibitory species;, our study we assume a proportional dependence between
Standing oscillatory patterns do not naturally arise in the BZnhe actinic light intensity and the difference between the av-
reaction. Until recently, standing waves and clusters haV@rage concentration of Ru(b&\?)" and a target concentra-
been observed only in heterogeneous systems, e.g., duriign. We call this proportionality constant the feedback coef-
electrochemical dissolution of nickgd], oxidation of CO on ficient, and we study pattern formation as a function of this
a Pt catalysf10], hydrogen oxidation on a nickel riid1],  parameter. Our simulations in one- and two-dimensional sys-
and methylamine oxidation on Hi2]. Global feedback in- tems exhibit a plethora of patterns, including two-phase and
teractions play important roles during these heterogeneousree-phase clusters and other, more complex clusters.
processes, and they are responsible for the occurrence of
standing patterns. In contrast, homogeneous reactions, unless || MoDEL AND METHOD OF SIMULATION
they are specifically designed, do not possess these global
interactions and therefore they do not commonly display We study pattern formation in a quantitative model of the
standing patterns. Nevertheless, studies with a simple mod8Z reaction with a realistic global feedback coupling. In the
photosensitive Ru(bpy)catalyzed BZ reaction, illumination
results in production of Br ions via reduction of bromoma-
* Author to whom correspondence should be addressed. lonic acid by the excited Ru(bpy)* ion [18]. The model,
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based on a simplified, two-variable version of the BZ reaction mgt&Rd, is

—X——ZX 3 q +koB+ Y Zow—2Z —2k X2+k hogAX—k U2+D —azx 1
It k2X k3A 7 8k8 k,7h0(C Z) 9 ( av t) 4 5H0 -5 Xarzv ( )
—=ksU(C—-2Z k_gXZ k7k8 +D —2 2
dt 6 ( ) —6 k8 k,7h0(C Z) Zarz’ ( )

where

—kg(C—2)+ [Ks(C—2Z)]?+ 8k_5(2kshoAX+Kk_gXZ)
U= K. ()

Here X=[HBrO,], Z=[Ru(bpy)®*], U=[HBrO,"], A  conditions are employed in most of the simulations. We use
=[HBrOz]=hgAy/(hy+0.2), A;=[NaBrO;], Bis the con-  spatially uniform and random initial conditions, stationary
centration of malonic acidC is the total concentration of patterns from previous runs, and some specially designed
catalyst[ Ru(bpy)3* ]+ [Ru(bpyk?*], hy is the Hammett initial conditions.

acidity function, andD,,D, are the diffusion coefficients.

Z,, is the instantaneous spatial averageZadnd Z; is the IIl. RESULTS
target value of the oxidized form of the catalyst, which is set _
to correspond t@g, the unstable steady state concentration. A. Local dynamics

The parametey is the feedback coefficient, which depends e first analyze the dynamics of modd) without dif-
on the maximum actinic light intensity and on the quantumfysion terms, which corresponds to a well-mixed system.
yield of the photochemical reactidd 7]. Figure 1 shows a bifurcation diagram in tBeh, parametric
The GF in Eq.(1) represents an indire¢dff-diagona)  space for the feedback-free systep=0). Hopf bifurcation
feedback, rather than the more commonly encountered direghes separate the region of sustained oscillations from re-
(diagonal feedbacK 11]. This choice corresponds to the real gions of reduced and oxidized steady states. In the following
experimental situation, where one observes the changes ¥imulations we choose parameteB=0.2M and h,
the concentration of the oxidized and reduced forms of the- 9,55y from the oscillatory regioripoint P in Fig. 1). The
Ru(bpy); complex and thus measures thevariable, while  oscillatory behavior at this point is displayed in FigaR
the actinic light directly influencelsHBrO,], the X variable.  and the effect of the feedback is shown in Figb)2 The
The parameters and constants used in our simulations aggnplitude and frequency of oscillation remain almost un-
shown in Table [; the feedback coefficieptis the variable  changed for 2 y<0.8 s'1, but at larger values of the feed-
parameter. Simulations of the one- and two-dimensionaback coefficient the limit cycle is strongly affected. The am-
reaction-diffusion system are performed using a finite-pjitude and period of oscillations decrease as the feedback
difference approximation to Eql). The corresponding sys- coefficient is increased. If the target valde is set to the

tem of ordinary integro-differential equations is solved usingsteady state valug.., the feedback does not affect the sta-
the Euler method with adjustable time step. The maximumjjity of the steady state.

step used in the simulations isx2L0"2 s. The number of

grid points varies with the length of the system. Unless stated 0.8
otherwise, the size of the one-dimensional system is 10 mm
and we use 30 grid points per millimeter; the size of the 0.6 |Oxidized SS
two-dimensional system is 2010 mn? with a resolution of . p
20 grid points per millimeter. Neumarimero-flux boundary %0_4.

£

Oscillation
TABLE |. Rate constants and parameters of Eq.

0.2
ky (M~2s71)  2.0x10°F  Ay(M) 0.5 0o Reduced SS

Kg (M~2s71) 2.0 B(M) 0.27 0.0 0.1 02 03 0.4
Ky (M~tsh)  3.0x10° C(M) 2.0x1073 B (M)
Ks (M~2s Yy 3.3x10 ho(M) 0.55

FIG. 1. Bifurcation diagram of the well-stirred ruthenium-

K-s (M~tsTh 420 a 0.7 catalyzed BZ reaction without feedback. The Hopf bifurcation lines
Ke (M7ts™)  40x10°  Dyenfs') 15X10°°  givide the parametric plan@-h, into domains of sustained oscilla-
kg (M~tsh  3.0x10 D (cn?s!)  2.0x10°°  ton, steady state with high concentration of Ru(kBy) (reduced

Ky M~tsy 92«10t S9, and steady state with high concentration of Ru(lp¥y)(oxi-
kg/k_+7 2.5x1074 dized S$. Unless otherwise stated, simulations are performed with
Kg (sH 3.0x10°© parameters corresponding to poiRt Other parameters used in

simulations are shown in Table I.
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FIG. 2. Oscillations of Ru(bpy)®*] in the well-stirred system.
(a) Oscillations in system without feedbadk) Effect of feedback 2.04,
coefficient y on maximum and minimum concentrations of < 150
Ru(bpy)®" during oscillation.Z, is unstable steady state concen- v
tration of Ru(bpy)}3* .

B. Bulk oscillations and traveling waves . . .
at weak global feedback 0 25 50 75 100

We study pattern formation in one- and two-dimensional
extended systems. Figure 3 displays a diagram of the basic
types of pattern 'obse_rved: bulk oscillatiofi80's) and trav- (a) Snapshot of a 2D pattern at time 400 (k) Spatiotemporal
eling waves(TW's) without feedback or at weak feedback, pepayior along a vertical line at midpoint of horizontal axis. Time
two-phas€(C2) and three-phaseC3) clusters at intermediate  shown corresponds to 260(&) Local oscillations at point# (dot-
intensity of GF, and irregular cluste¢C's) at relatively  teg ling and B (dashed ling together with oscillations of average
high levels of feedback. Eventually, IC’s are suppressed atoncentratiorz,, (solid line). Gray levels represefiRu(bpy)3* ],
very high feedback coefficient and small-amplitude bulk os-with black corresponding to the maximum and white to minimum
cillations (SBO’s) emerge. concentration. Size of system is Q0 mnt.

A simulation starting from a traveling wave pattern in a

one-dimensiona(1D) system evolves to a uniform, periodi- length. Figure &) shows an example of two-phase clusters
cally oscillating pattern in a feedback-free system. In a 2D 9. g . pie P
rising from a spiral wave. The rotational movement of the

system some spiral waves are stable without feedback. Bofh'"; ) - .
BO’s and TW's are stable when the feedback is weak. Théplral _stops after_mcrease of the feedback coefficient, \_Nh_lle

ranges ofy in which bulk oscillations and traveling waves the spiral shape IS preserved. _The clusters ha_ve two d's_t'n(_:t
are stable overlap, which indicates that the pattern formatioRnases half a period apart, which leads to antiphase periodic
is dependent on the initial conditions. Spatially uniform ini- ©Scillation of domains with different phasgsee Figs. &)

tial conditions always lead to BO’s whep<0.8 s'1. We  and 4c)]. Domains with different phases are separated by

obtain spiral waves, target patterns, and alternating travelingodal lines, which, after a transient period, become station-
waves in our 2D simulations fo1y<06 Sfl from nonuni- ary and do not Change their pOSitiOI’l with time. The emer-

FIG. 4. Two-phase cluster arising from spiral wayes 1 s 2.

form initial conditions. gence of stationary C2 clusters in this system usually pro-
ceeds via very long transients. The tiny changes in the nodal
C. Oscillatory cluster patterns lines hardly visible in Fig. &) are indications of these long-

lived transients.
When cluster patterns arise from random initial condi-
When the feedback coefficient exceeds 0.6,sin the tions, they always contain in the early stages many small
case of random or traveling wave initial conditions, orspots of different shapes with sharp corners and large curva-
0.8 s'! in the case of spatially uniform initial conditions, tures, as shown in Fig.(8). In the later stages of the evolu-
two-phase clusters emerge. These clusters have fixed spatin, the smallest spots disappear and the nodal lines sepa-
domains and oscillate periodically in time; they resemblerating domains become smoother due to a curvature effect
standing waves, but their spatial domains are determined t{BFigs. 5b) and Fc)]. Figure Fd) shows this coarsening pro-
the initial conditions, and they possess no intrinsic wavetess in a space-time plot. Although the oscillatory cluster
patterns do not possess a characteristic wavelength, these
C3 Jc patterns require a minimum wavelength in order to be sta-
= oz tionary. Therefore, to obtain stationary cluster patterns from
TwW random initial conditions, one needs to run the integration
BO SBO for a long time. As Fig. &) indicates, the coarsening pro-
— - cess takes close to a hundred periods of oscillation.
5 1 ) 3 T Another property of C2 clusters ghase balancesquality
¥ of areas occupied by the two domain types. If the initial
v(s™) g . -
conditions do not satisfy this equal area property, then the
FIG. 3. Parametric diagram of 1D system with zero-flux bound-nodal lines slowly drift during the transient period until
ary conditions. BO, bulk oscillations; SBO, small-amplitude BO; phase balance is attained. In a 1D system the lengths of the
TW, traveling waves; C2, two-phase clusters; C3, three-phase cluglomains of the minority phase increase monotonically. Fig-
ters; IC, irregular clusters. ure 6 shows a 1D simulation with initial conditions such that

1. Two-phase clusters
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FIG. 5. Two-phase cluster pattern obtained from random initial t(s)
conditions, y=1 s !. Sequence of the oscillatory cluster pattern
taken at(a) t=250 s(b) t=750 s, and(c) t=4300 s.(d) Pattern FIG. 7. Three-phase clusters=2.5 s 1. Snapshotga), (b),

evolution along the bottom left—top right diagonal. Size of systemyn(c) are taken at time intervals 11.88 s apart, which corresponds

is 10<10 mnt. to one-third of local oscillation periodd) Local oscillations at
points A, B, C of frame (c) together with oscillations of average

the ratio of lengths of the two phasesli4:L2=1:3. One  concentratiorZ,, (solid line). Size of the system is 2010 mnt.

can see that after about 100 periods of oscillation the lengths

of the two domain types are almost equal. In 2D systems, thgry(bpy),3* ], which is displayed as white; one can always

processes are more complex because of the curvature effegigs. 7a), (b), and(c). The time sequence shown in Figdy
displays periodic oscillations at three points of space. How-

2. Three-Phase Clusters ever, individual points undergo periodic oscillation for only a

When the feedback coefficient exceegls 1.8 s'%, the  few periods. In a longer run the oscillations are not quite
C2's become unstable and three-phase patterns arise. TR&riodic, because the borders of the phase domains move,
phases of C3 clusters are shifted by one-third of the period dput the 3+OSC'”3“_0”5 of the average concentration of
the local oscillationsT). Figure 7 shows an example of a C3 Ru(bpy);" remain periodic. We always obtain C3's when
pattern obtained from random initial conditions. The do-the feedback coefficient is 1s8y<3.1s". Within this
mains of the three clusters with low, medium, and high lev-range the C3's do not overlap with any other pattern, i.e.,
els of[Ru(bpy)3*] are displayed as white, gray, and black, their formation is independent of the initial conditions. C3’s
respectively. After one-third of the periof} the white do-  arise also for 0.65y<1.8 s *, but in this case they are not
mains become black, black domains become gray, and grdfie¢ only pattern found in the syste(see Fig. 3 We can
turns to white. After a full period, the levels of observe C3's within this multistable range if we first create a
[Ru(bpy)3*] repeat. Figure (d) shows the oscillatory be- C3 at a higher value of, where it is the iny stable pattern,
havior of each phase together with the average concentraticid then decrease the feedback coefficient. Wheirops

Z., . The borders between adjacent domains contain contindeelow 0.65 s*, C3's vanish and traveling waves emerge. If
ous levels of Ru(bpyf*. When a gray(intermediate We start from a TW pattern and increase the feedback coef-

[Ru(bpy):3*]) domain is adjacent to a blackhigh ficient beyond the TW stability, we usually obtain C2's first;

[Ru(bpyﬁ*]) domain, the border also contains low _only aftery>1.8 st do the C3's arise. In Fig. 3 th,is b_ehav-
ior is shown as overlapping of the domains of C2’s with part

of the TW and part of the C3 domains.
L1 | |””|| | HH”‘H ’H” HH H ‘ HH ’ (a) Border movementAs mentioned above, in the case of
C2’s the borders between domains with different phases be-
L. come stationary after a transient period. We have not found
stationary borders in the case of C3's, even for very long
(@) ; - runs. As the domains change phdsad thus the level of
— 15 [Ru(bpy)®*]) with time, from white to black and then to
g gray, the border gradually moves in one direction. To follow
I:T; 1.0 border movement we take one snapshot per peficahd

compare borders in these consecutive snapshots. The borders
. : : of C3's always drift, following a simple rule: the border
(b) 500 i 1gee 1500 moves in the direction that leads to expansion of black do-
(s) mains into white domains, white domains into gray, and gray
FIG. 6. Evolution of phase balance between domains of two-dom";“ns into black. According to this rule, when the do-

phase standing cluster in 1D system with initial ratio of phase do/Mains alternate regularly, their sizes remain almost un-
main sizes 1:3y=1 s . (a) Spatiotemporal behaviofb) Oscilla- ~ changed and only their positions change with tififég.
tions of average concentration of Ru(bgy). Length of system is  8(a)]. On the other hand, if a domain is surrounded entirely
10 mm. by domains of a singlgRu(bpy)®*] level, then there will
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FIG. 8. Border drift and interactions of domains in three-phase =
clusters. Enlargement of parts of pattern from Fig. 7; displayed area £ 08
is 1.35< 1.35 mnf. (a) Drift of border domains, snapshots taken at NG . ‘
time interval 2I' apart, whereT is period of local oscillations(b) (d) ) 500 1000
Annihilation of a domain—snapshots are taken at time interVals t(s)

apart.(c) Fusion of two domains of one phase, originally separated

by a domain of second phase, results in creation of domain of third FIG. 10. Three-phase clusters in 1D systéanPhase balance is

phase—snapshots taken at time intervakspart. reached in system with periodic boundary conditioiis.Absence
of phase balance in system with zero-flux boundary conditi@)s.

. . . . (d) Oscillations of averag¢Ru(bpy)®*] correspond to patterns
be a size adjustment. Figuré¢b3 shows a black domain sur- shown in(@) and (b), respectively. Length of system is 10 mm.

rounded by gray domains. The black domain gradually_, 1
shrinks in size and eventually disappears, as the gray domain
engulfs it. . .

In some cases, we observe another interesting behavidP™ a}three-armed spiral. If we take one snapshot per period
Figure 8c) shows a collision between two white domains, and display the .pattern as a sequence of these snapshots, we
which expand through a gray domain. At the point of colli- S€€ Only a rotating three-armed spiral. , ,
sion, a small piece of a thirtblack domain is created. This _ (€) Phase balanceWe investigate the properties of C3's
new black domain area increases in size with time. The colln POth 1D and 2D systems. In a 2D system with either

lision thus allows the formation of a “missing” third domain zero-flux or periodic boundary conditions, we find that the
at the collision point. sum of the areas belonging to each of three phases always

(b) Border curling. Sometimes, three domains with converges to one-third of thg total area. Once th_is phage bal-
phases shifted byi/3 meet at a singular point. Around this ance is reached, the osmlllatlonsZij become periodic with
point, the borders rotate periodically, creating a cluster spiraf fequency three times higher than the frequency of the local
wave. This border curling occurs naturally when C3's ariseconcentration oscillations. This phenomenon is analogous to
from random initial conditions. One can observe several art"® Phase balance of C2's, where the frequencyZgf is
eas with border curling in Fig. 7. To demonstrate the dynam{Wice the frequency of the local oscillations. However, in 1D
ics of border curling, we employ special initial conditions, SYStems phase balance of C3's is not always achieved. The
which lead to creation of C3's with curling borders. Figure 9 d€velopment of phase balance in a 1D system requires peri-
displays such a pattern, which arose from the initial condi-°dic boundary conditions, which allow rotational movement
tions shown in Fig. @). The pattern displays three-phase of the phase dom_al_n_ borders_._After a transient period, which
oscillations on the short time scale, while on the long timed€Pends on the initial conditions, all borders move at the
scale one can see the movement of domain borders, whicime constant speed, which indicates that phase balance has
been reachefkee Figs. 1@&) and 1@b)].

(d) Absence of phase balancia a 1D system with zero-
flux boundaries, movement of domain borders is limited,
which results in persistent unequal sizes of the phase do-
mains. The zero-flux boundary conditions do not allow rota-
tional movement of the phase borders, and this prevents the
system from reaching phase balance. Movement of the do-

(a) (b) (C) main borders first Iee_lds to a decrease of the area occupied by
some of the domains. The border movement eventually

FIG. 9. Three-phase spiral clustém) Initial pattern of three stops_, and, a.s Figs. db) and 1Qd) show, a stqtlonary pat- .
domains with phases shifted by one-third of local period. Point atte_m 'S_ established with unequal areas occupied by domains
which three domains meet becomes tip of spiral during long-timeVith different phases. This stable cluster pattern represents
border curling movementb) Pattern at time=48T. (c) Pattern at ~ @n exception to a general rule that oscillatory patterns with
time t=153T. y=1 s %, local period of oscillationsT=38.16 s, period larger than 2 are typically metastable rather than
size of system is 1810 mnt. stable[21,22.
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FIG. 11. Irregular cluster pattern in 2D system with zero-flux :E

boundary conditions(a) Snapshot of patternib) Corresponding —— o

spatiotemporal behavior along horizontal line at midpoint of verti- .‘ :: é

cal axis. Time shown is 1290 3,=3.2 s'!; size of system is 5 s

X5 mn?. —r—

3. Irregular Clusters (C) (d) space

At relatively largey (>3.1 s %), another type of pattern  FiG. 13. Irregular and regular localized clusters in vicinity of
arises. In this case, local oscillations in domains of differentopf bifurcation(near reduced steady statés) Snapshot of local-
phases are not periodic, even during a short period of timézed irregular cluster antb) corresponding spatiotemporal pattern,
as in the case of C3's, and we dub these patterns irregulay=0.5 s*. (c) Snapshot of regular localized standing cluster and
clusters. Figure 11 shows a pattern of IC’s. Any type of(d) corresponding spatiotemporal patteys; 0.7 s 1. Spatiotempo-
initial conditions results in a random distribution of black, ral patterns are taken along horizontal line at midpoint of vertical
gray, and white domains, as shown in Fig.(d@1and an axis. Time shown in(b) and (d) is 1080 s. Parametersh,
absence of stationary node lines, shown in FigbLIFigure ~ =0.19 M, B=0.27 M. Size of system is 2010 mn¥.
12 shows oscillations at one arbitrarily chosen point together
with oscillations in the average concentratioyg, . Figure 12 of the space, while in the remaining part small-amplitude
demonstrates that local oscillations of IC’s are aperiodicpulk oscillations occur. Whery is increased further, the area
while the global oscillations are nearly periodic. of SBO’s increases. Then, a pattern of localized C2 clusters
emergegFigs. 13c,d)], which displays regular periodic os-
cillations in domains that occupy a small part of the space.
This pattern, which has stationary nodal lines, has been de-
scribed in Ref[16]. Finally, wheny>3.5 s !, the system
displays uniform small-amplitude bulk oscillations.

When the parameters are close to the boundary with the
oxidized steady state, we obtain only C2’'s at intermediate

; S values of the feedback coefficient. Both weak and strong
etersB andhp are close to the Hopf bifurcation fine separat- feedback result in uniform oscillation, but with large and
ing the oscillatory region from the reduced steady Statesmall amplitude, respectively ’

region, we do not obtain C3's, but instead patterns of local-
ized clustergLC’s) arise. Figures 1@ and 13b) show lo-
calized irregular clusters. In this case IC’s occupy only a part

4. Localized clusters

The IC’s shown in Fig. 11 display irregular oscillations at
every point of the systelfsee Fig. 11b)]. When the system
is inside the oscillatory region, far from the Hopf bifurcation
lines (point P in Fig. 1), this pattern gives way to small-
amplitude bulk oscillations wheg>3.5 s . When param-

IV. DISCUSSION AND CONCLUSION

We have studied pattern formation in a realistic model of

Z (mM)

« (MM)

4

2.01

1.24

0.41

0.84

(a)

(b)

©

the photosensitive BZ reaction. A plethora of reaction-

diffusion patterns arise when the feedback coefficient is var-
ied. We focus here on cluster formation. At relatively low

values of the feedback coefficient, two- and three-phase clus-
ters arise, each of which consists of uniform domains. Inside
the domains, oscillations are synchronous. The domains form
patterns which usually lack spatial periodicity, since global

feedback does not produce a characteristic wavelength. Dur-
ing the evolution of these patterns, global feedback plays an
important role in establishing equality between the areas oc-

107 cupied by domains of different phases. Border curling of
three-phase clusters may lead to formation of spiral
clusters—a fast oscillating cluster with a slow three-arm spi-
raling movement of the borders. At higher feedback coeffi-

FIG. 12. Local and global oscillations of irregular cluster patternCi€nt, irregular cluster patterns arise. Local oscillations of
shown in Fig. 11(a) Oscillations at a point antb) corresponding  I'regular clusters are aperiodic in time; however, oscillations
power spectrum.(c) Oscillations of average concentration of Of the averagd Ru(bpy)**] remain periodic in this case.
Ru(bpy}®* and (d) corresponding power spectrum. Main peak is Localized clusters arise only for parameters near the Hopf
located at frequency 0.104 Hz. line, and they display regular or irregular clusters, which

04

3600 3900 0.0 0.5 1.0
t(s) Frequency (Hz)
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occupy only a part of the space, while the remaining parBZ reaction mixture through a mask imprinted with an image

displays small-amplitude bulk oscillations. and then applies global feedback, the initial image can be
We are not aware of other work demonstrating three-maintained in the form of C2’s for some time. Such an ex-

phase clusters as a result of global feedback coupling. Morgeeriment may be thought of as an extension of the study by

over, the C3's obtained in the BZ model with global feed- Kuhnertet al. [24], in which the authors succeeded in tran-

back are found in a relatively wide parameter region with nosiently preserving photographic images in ruthenium-

other overlapping pattern. This means that three-phase clusatalyzed BZ reaction mixtures.

ters arise from any initial conditions. The existence of C3's
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